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1.1. Introduction 
Automated vehicles (AVs), also called autonomous or self-driving vehicles, have the potential to reduce 
accidents, help with the environment, reduce congestion, help the elderly and other disadvantaged 
populations, and produce other societal benefits [1-5]. However, the touted advantages of autonomous 
vehicles and those including latest ADAS features are turning out difficult to sell to the public than many 
manufacturers and tier 1’s have anticipated. Much of the early euphoria of self-driving vehicles is 
diminishing in the wake of some recent accidents involving automated vehicles with varying degrees of 
automation. A recent online marketplace for buying and selling cars, found 69% of respondents are scared 
of autonomous automobiles. It also found that these people found technology in cars helpful (58%) but 
only 12% said ADAS and infotainment features were “must have”. The survey asked more than 1,000 
respondents from across the US geographically and across age groups, although it should be noted the 
biggest group was 60+ years-old1. Accidents involving self-driving vehicles are inevitable; as it is the 
case with other industries, accidents have happened and will happen no matter the efforts made to avoid 
them. The National Transportation Safety Board (NTSB) has issued a report2 on a Tesla accident on May 
7, 2016 and two preliminary reports on a Uber accident3 on March 18, 2018 and a Tesla accident4 on 
March 23, 2018. After analyzing these reports, what is disturbing are the details associated with these 
accidents which indicates that as an industry, we may need to go back to safety 1015.  
 
Regarding the aforementioned accidents, it would not be so bad if the safety systems of the vehicles in 
question were designed and functioning properly according to their stated automation level. In the case of 
the Tesla accident in Florida, the vehicle failed to activate the forward collision warning (FCW) system 
and automatic emergency braking (AEB). In the case of the Uber accident, emergency braking maneuvers 
were not enabled while the vehicle was under computer control, to reduce the potential for erratic vehicle 
behavior and the system relied on the vehicle operator for safety. In the Tesla accident in California, the 
vehicle failed to detect a damaged crash attenuator and hit it at a speed of about 71 mph. 
 
After recent incidents and mishaps involving automated vehicles such as those described above, it is clear 
that there is much room for improvement not only by manufacturers but also by government regulations, 
researchers, the general public and other stakeholders. Over the past few months, the media has been full 
of headlines such as “How Safe Is Driverless Car Technology, Really?”, “Autonomous Cars: How Safe Is 
Safe Enough?” and “How safe should we expect self-driving cars to be?” In addition, some industry 
analysts and safety experts are offering advice to tech and automotive companies to re-consider their 
safety programs. There is also some agreement that “the self-driving car industry’s reputation has suffered 
a setback,” and the question is how to fix it5. It appears that automated vehicle companies are much more 
stringent when using semiconductor devices and EDA tools demanding that they conform to ISO 26262 
than using the same yard stick for their own safety critical designs.  
 

                                                           
1http://analysis.tu-auto.com/autonomous-car/shifting-public-acceptance-autonomous-tech?NL=TU-
001&Issue=TU-001_20180723_TU-001_235&sfvc4enews=42&cl=article_2_2 
2 https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf 
3 https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf 
4 https://ntsb.gov/investigations/AccidentReports/Reports/HWY18FH011-preliminary.pdf 
5https://www.eetimes.com/document.asp?doc_id=1333446&_mc=RSS_EET_EDT&utm_source=newsletter&utm_c
ampaign=link&utm_medium=EETimesWeekInReview-20180721 
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So what is there to do? Safety is not new, at least for the last 60 years it has been successfully applied in 
several industries such as  nuclear, avionics, process control, automotive, and others. What is unique and 
special about the safety of self-driving vehicles?  What should be the emphasis for a more effective 
automated vehicle safety program? What are the roles of governments, standards, testing, verification, 
validation, and sound safety engineering efforts?  Addressing issues regarding autonomous vehicle safety 
is challenging [7]. Currently, as an industry, we just do not fully understand the nature of self-driving 
vehicle safety and how to design safe automated vehicles. For example, there is little discussion on ways 
to estimate, analyze, compute, or measure the level of safety of an automated vehicle design or automated 
vehicles. We need to begin by fully characterizing it and this book series  is an effort in this direction. 
 
Some manufacturers such as Waymo cite  their recent milestone of 8 million miles driven on public roads 
as a measure of the safety achieved by their self-driving vehicles6. However, it is not clear how a certain 
number of millions of miles driven contributes to the safety level of self-driving vehicles. Some industry 
analysts believe that policy makers and city officials overseeing infrastructure will be the most important 
players in reshaping the self-driving vehicle safety landscape. For example, NHTSA has issued a 
voluntary guidance whose purpose is to help designers of automated driving systems (ADSs) analyze, 
identify, and resolve safety considerations prior to deployment using their own, industry, and other best 
practices7. It outlines 12 safety elements, which the Agency believes represent the consensus across the 
industry, that are generally considered to be the most salient design aspects to consider and address when 
developing, testing, and deploying ADSs on public roadways. Within each safety design element, entities 
are encouraged to consider and document their use of industry standards, best practices, company 
policies, or other methods they have employed to provide for increased system safety in real-world 
conditions. The 12 safety design elements apply to both ADS original equipment and to replacement 
equipment or updates (including software updates/ upgrades) to ADSs. However the NHTSA guidance is 
not specific enough to help manufacturers designing effective safety mechanisms to reduce risk. 
 
1.2 Characterizing the Safety of Automated Vehicles 
How different is the concept or notion of safety in self-driving vehicles when compared to that used in 
other industries such as aviation, process control, and automotive? While the fundamental concepts are 
the same, the safety of self-driving vehicles has specific attributes that are different or not present 
in the safety of other industries. In this section we briefly discuss these attributes. When compared to the 
safety of traditional industries such as avionics, process control and automotive, there are specific 
attributes pertaining to the safety of self-driving vehicles that we discuss next [23]. 
 
1.2.1. Performance degradation. 
Traditional safety is based on faults and failures of mostly hardware components, and this is referred to as 
the reliability approach to safety [9]. In contrast,  accidents involving self-driving vehicles might happen 
even if no hardware device fails, but rather a performance degradation of some of its functions or 
intended functionality occurs. Addressing safety issues for these situations is referred to as SOTIF, and it 
is a fairly new concept as applied to the safety of self-driving vehicles [10]. Thus, some failures are due to 
performance degradation of self-driving vehicle components, typically involving higher levels of 
processing or higher levels of automation, e.g., service failures. This definition of failure goes beyond that 
which is defined in the standard ISO 26262; however, it is compatible with other safety frameworks such 
as [8], STPA [11], [12], [13], [14], [15], or other real-time distributed systems [16]. One example of this 
understanding of the concept of safety is the failure of a vehicle detection system where the perception 
system provides missed detections (i.e., false negatives) or spurious detections (i.e., false positives). This 
could happen because the processing of environmental data is highly complex and the object detection 
function is subject to errors and impairments, particularly in bad weather or in night conditions when the 

                                                           
6 https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing 
7 https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf 
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visibility is poor. Either one of these failures could be catastrophic and could result in an accident or 
harm. Another example is a RAdio Detection And Ranging (RADAR) system correctly detecting objects 
only when the objects are moving, thus missing static objects because of limits on its performance. Thus, 
failure occurs in a degraded performance scenario. 
 
1.2.2. Focus on software. 
It is well known that the amount of software in a vehicle continues a rapidly increasing trend that started 
with the development of by-wire systems. Much of the functionality of a self-driving vehicle is 
implemented in software, and thus it is important to view the perception system as a set of software 
servers each providing services to the rest of the system. Therefore, one can refer to these various 
functionalities as a vehicle detection server, a pedestrian detection server, a road detection server, etc. The 
software in self-driving vehicles is much larger in size and scope compared to traditional industries; thus, 
there should be a focus on the safety of the software. As noted, a failure can occur if the software services 
deviate from the correct services and this could lead to safety hazards and safety risks. Ultimately, the 
overall safety of a self-driving vehicle will be dictated by the safety of its software [9], [12]. 
 
1.2.3. Non-deterministic perception system.  
In the absence of hardware faults, the perception systems of traditional industries are mostly deterministic 
in nature. For example, sensing the intake manifold pressure or engine speed in automotive systems is 
deterministic4. In contrast, the perception systems of self-driving vehicles are non-deterministic, leading 
to a high level of false positives and false negatives when their performance deteriorates to the point that 
service failures cannot be avoided. The non-deterministic aspect of the perception system stems from the 
fact that one never knows when its performance will deteriorate to the point where failures begin to 
appear in the services delivered by the system. Thus, the services provided by the perception system are 
subject to random failures; e.g., when the weather deteriorates or when the system makes detection errors. 
 
1.2.4. Perception system complexity. 
Sensing elementary physical phenomena such as temperature or pressure is relatively simple, involving 
just some deterministic sensors, some electronics, and communications. In contrast, sensing or detecting 
man-made entities or constructs such as another vehicle, a road boundary, a city street, or a street 
intersection is complex because of the lack of structure of what is being sensed or 
perceived. The implication of the complexity of the perception system is that it is prone to errors, which 
degrades the performance or safety of the overall vehicle. 
 
1.2.5. Overall system complexity. 
In addition to its perception system, a self-driving vehicle also includes localization and mapping, 
planning and control, and actuation resulting in a highly complex system. One of the main issues with 
system complexity is that it makes testing for safety challenging, particularly if machine learning 
techniques are used, as it makes the design opaque to humans. This makes tracing the 
design and the test plans to the requirements problematic, since there is no human-understandable design 
that can be used for verification and testing [17]. In addition, it is known that when the system is 
complex, the system safety is affected by interacting complexity and tight coupling [9]. Another aspect 
of system complexity is that the autonomous vehicle operates in a complex external environment, and 
there are safety hazards due to events outside the domain of the autonomous vehicle, e.g., from other 
vehicles (whether self-driving or not). Thus, the safety attributes of a self-driving vehicle are significantly 
different from those in other industries such as avionics, process control, and automotive. 
 
In addition to its attributes, what are the various types of safety that encompass the overall safety of self-
driving vehicles? As noted, the safety of self-driving vehicles is complex and differs from that of other 
industries such as avionics, process control, and automotive. On the one hand, there are safety 
commonalities such as the safety that involves component failures, which is the subject of so-called 



4 
 

functional safety, and the safety involving components whose failure rates are well understood because 
they are proven in use, i.e., in actual operation. On the other hand, there are two types of safety that are 
not prevalent in the avionics, process control, and automotive industries, and these include SOTIF and 
multi-agent safety. Thus, the types of safety that characterize the safety of self-driving vehicles include 
(1) Traditional functional safety as defined by ISO 26262, (2) SOTIF, and (3) multi-agent safety [23]. 
Feth et al also emphasize that safety assurance is a concern because established safety engineering 
standards and methodologies are currently not sufficient [22]. They also conclude that there are three 
types of safety that characterize the safety of self-driving vehicles, (1) Traditional functional safety, (2) 
SOTIF which they assume are due to functional insufficiencies, and (3) multi-agent safety related to safe 
driving behaviors which are abstracted from technological challenges of situation awareness. 
Furthermore, they elaborate the fundamental safety engineering steps that are necessary to create safe 
vehicle of higher automation levels while mapping these steps to the guidance presently available in 
existing (e.g., ISO26262) and upcoming (e.g., ISO PAS 21448 [26]) standards. Functional safety is a well 
understood area which is guided by a number of international standards such as IEC 61508 [18], IEC 
61511 [19], and ISO 26262 [6], and there is a large number of papers and publications on this topic. 
However, it is noted that ISO 26262 does not cover automated vehicles, thus its application should be 
done with great care. In the following, we characterize the safety category of SOTIF. 
 
1.3 Role of Systems Engineering 
Many systems and products are very complex, very large, or both; certainly one example is an automated 
vehicle with a high degree of safety, thus the complexity of designing and developing an autonomous 
vehicle with a high degree of safety. Systems engineering (SE) is a methodology that includes a set of 
processes, techniques, and procedures to design systems that are very complex and/or very large. SE is 
based on the concept of  a system lifecycle composed of a number of phases such as concept, product 
development, and production and operation. The concept phase includes many sub-tasks such as item 
definition, initiation of safety lifecycle, hazard analysis and risk assessment, and functional safety concept 
(FSC). The product development phase can be performed at a system, hardware, and software levels. 
Finally, the production and operation (or utilization) phase includes production, operation, service 
(maintenance, repair, etc.), and decommissioning. 

The number and names of system lifecycle phases are not unique. Other phases identified with a 
system lifecycle include requirements phase, preliminary and detailed design phase, construction and 
production phase, and the operation phase. The requirements phase is an important phase that takes place 
at the beginning of a project that involves top level requirements at all functional levels. Some 
requirements are further developed or extended into“derived requirements”. This process is repeated 
appropriately until reaching the lowest level possible.  There are two types of requirements, functional 
and non-functional. Requirements need to be carefully selected in order to ensure that they make sense in 
the context of the final outcome of the project and conveyed to all the team members. Missing out on a 
requirement or misapplying one could spell disaster for a project. A functional requirement 
specifies what the system should do, i.e., it describes a particular behavior or function of the system when 
certain conditions are met, for example: “Send email when a new customer signs up” or “Open a new 
account.”  A functional requirement for an everyday object like a cup would be: “ability to contain tea or 
coffee without leaking. ”Examples of some functional requirements include: Carry people on public 
streets and roadways, carry people through air space provide external interfaces, define business rules, 
perform transaction corrections, perform adjustments and cancellations, provide administrative functions, 
provide authentication, use authorization levels, perform audit tracking, etc. A non-functional requirement 
specifies  how the system performs a certain function, i.e., it describes how a system should behave and 
what limits there are on its functionality; it specifies the system’s quality attributes or characteristics, for 
example: “Modified data in a database should be updated for all users accessing it within 2 seconds.”A 
non-functional requirement for the cup mentioned previously would be: “contain hot liquid without 
heating up to more than 45 °C.”Important categories of non-functional requirements include 
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availability, safety, security, and reliability. The preliminary and detailed design phase includes 
intermediate and final designs with enough details and specifics for its implementation by other parties. It 
is based on requirements and involves  assumptions, calculations, measurements, simulations, etc. The 
outcomes of this phase are produced using an assortment of tools in the categories of drawing, simulation, 
system engineering, etc. The construction and production phase is that where the system is built up using 
blueprints of the detailed design phase. When the construction is done in series, e.g., in a manufacturing 
plant, then it is termed production. Testing is an important activity to be done during construction. There 
are many types of tests such as unit test, system test, interoperability test, stress test, system test, etc. The 
operation phase starts when the system or product is put in service and ends when the system is taken out 
of service or decommissioned. It includes the following activities: operation, maintenance, 
troubleshooting, repair, etc. 
 
 

 
 

Fig. 1. System Engineering V-model listing main tasks on the left and right sides of the V. 
 
 
Systems engineering also uses the so-called V model to specify and describe key tasks while designing a 
complex or large system. These key tasks include requirements, design, implementation, test, verification, 
and validation which are performed at specific times and in a V shape depicted in Fig. 1. The lifetime 
phases (or tasks) of requirements, design, and implementation are performed on the left side of the V 
while the tasks involving testing, verification, and validation are performed on the right side of the V. The 
reason for depicting these activities on a V (rather than in a linear fashion) is that while working on the 
requirements specifications, the corresponding specifications for validation are developed concurrently 
and correspond to the same vertical level. While the completion of the requirements specification task is 
made very early in the development lifecycle of the product or project, the completion of the validation 
task is the last one. On the left side of the V, decomposition and definition activities resolve the system 
architecture and create the details of the design. Integration and verification flow up and to the right as 
successively higher levels of subsystems are verified, culminating at the system level. Verification 
ensures the system was built right (meets requirements, standards, etc.), whereas validation ensures 
the right system was built (meets customers’ needs). Ascending the right side of the V is the process of 
integration and verification and at each level, there is a direct correspondence between activities on the 
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left and right sides of the V. This correspondence is deliberate - the method of verification must be 
determined as the requirements are developed and documented at each level.  This minimizes the chances 
that requirements are specified in a way that cannot be measured or verified.  

Although SE can be applied to any endeavor (e.g., physical and social sciences, engineering, and 
management, etc.), in this section we discuss its application to engineering and more specifically, 
designing a safe automated vehicle.  One of the most fundamental ideas of SE is the following. At each 
level, starting at highest level of abstraction and proceeding to lowest,  identify main functions using 
input/output relationships and use functional decomposition techniques to generate sub-functions at lower 
levels of abstraction. This decomposition process is repeated until 4 to 8 levels (typically) deep are 
generated. At each level sufficient details is added to clarify composition, relationships, requirements, 
behaviors, interfaces, parameters, etc.  This process is illustrated in Figs 2 (a) and (b)  where a system or 
sub-subsystem is decomposed into constituent components until a sub-system with readily available 
components can be implemented. 
 
 

 
 

Figure 2 (a). Top level block diagram of a system. 
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Figure 2 (b). Functional decomposition of a component into its constituent sub-components. 
 
 
Designing a vehicle with a high level of safety is complex, thus the importance of using SE principles. 
Indeed, the ISO 26262 standard which has been specifically developed for automotive safety uses the V 
model as the underlying framework. This decision minimizes unnecessary rework, errors in requirements 
development and cascading.  This will force some testing and verification activities to occur at various 
levels of integration early in the process.  More specifically, the ISO 26262 standard uses the V model at 
the system level (Section 4), at the hardware level (Section 5) and at the software level (Section 6). 
 
1.3.1 Model Based Systems Engineering (MBSE) 
Model-based systems engineering is a systems engineering methodology that focuses on creating and 
exploiting domain models as the primary means of information exchange between engineers, rather than 
on document-based information exchange. These models fall into many categories including functional, 
behavioral, structural, operational, component, performance, safety, and many others. The benefits that 
are attributed to using an MBSE approach include shared understanding of system requirements and 
design, assisting in managing complex system development, improving design quality, supporting early 
and on-going verification and validation to reduce risk, providing value through life cycle, and enhancing 
knowledge capture. One effective way to benefit from MBSE is through specific modeling languages for 
systems engineering which have incorporated many domain models in an intrinsic fashion as is the case 
with SysML which is summarized next. 
   
1.3.2 The Systems Modeling Language (SysML) 
SysML is a general-purpose modeling language for systems engineering applications. It supports the 
specification, analysis, design, verification and validation of a broad range of systems and systems-of-
systems. These systems may include hardware, software, information, processes, personnel, and facilities. 
SysML is becoming important in the execution of many safety tasks associated with the V-model of 
system engineering. There are four major categories of SysML diagrams, also known as the “four pillars 
of SysML”, structure, behavior, requirements, and parametrics. The structure category basically allows 
one to describe what the system is including its main constituent components. While this is important to 
get started, the structure category is static as it does not describe how the system works or behaves which 
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is the function of the behavior category. Thus the behavior category describes the dynamic aspect of the 
system. As noted, all design work begin with a set of requirements describing what one can expect from 
the system. The requirements category of SysML enables the specification of these requirements. A 
system typically consists of many sub-systems with a number of interfaces. The parametrics category 
defines the nature of these interfaces including quantification beyond qualitativeness, e.g., formulas, 
equations, units, etc. 
 In most cases, just nine SysML diagrams are used which belong to the four categories described 
previously. The structure category includes three diagrams:  block definition diagram (bdd), internal 
block diagram (ibd), and package diagram (pkg). Four diagrams belong to the behavior category: 
sequence diagram (sq), state Machine diagram (stm), activity diagram (act), and use case diagram (uc). 
The requirements and parametrics categories each include just one diagram, the requirement diagram 
(req), and parametric diagram (par) respectively. In the following, we briefly summarize some of these 
SysML diagrams.  
 The SysML block definition diagram (bdd) represents system elements called blocks, and their 
composition, classification and navigation. The following figure illustrates the bdd of a perception system 
of an automated vehicle. 
 

 
 

Figure 3. The block definition diagram (bdd) of SysML. 
 
 
The SysML internal block diagram (ibd) represents interconnection and interfaces between the parts of a 
block including external ports of the block 
. The following figure illustrates the ibd of a perception system of an automated vehicle. 
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Figure 4. The internal block diagram (ibd) of SysML. 
 
The SysML package diagram (pkg) represents the organization of a model in terms of packages that 
contain model elements. Thus this diagram is used for model structuring rather than system structuring. 
The SysML sequence diagram (sd) represents behavior in terms of a sequence of messages exchanged 
between parts. The following figure illustrates the sd of a radar sensor sub-system pertaining to the 
perception system of an automated vehicle. 
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Figure 5. The sequence diagram (sd) of SysML. 
 
The SysML state machine diagram (stm) represents behavior of an entity in terms of its transitions 
between states triggered by events. The following figure illustrates the stm of an antilock braking system 
(ABS) of an automobile. 
 
 

 
 

Figure 6. The state transition diagram (std) of SysML. 
 
 
The SysML activity diagram (act) represents behavior in terms of the ordering of actions based on the 
availability of inputs, outputs, and control, and how the actions transform the inputs to outputs. The 
following figure illustrates the act of an antilock braking system (ABS) of an automobile. 
 
 

 
 

Figure 7. The activity diagram (act) of SysML. 
 
 
The SysML use-case diagram (uc) represents functionality in terms of how a system or other entity is 
used by external entities (i.e., actors) to accomplish a set of goals. The SysML requirements diagram (req) 
represents text-based requirements and their relationships with other requirements, design elements, and 
test cases to support requirements traceability. The following figure illustrates the req of a radar sensor 
sub-system pertaining to the perception system of an automated vehicle. 
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Figure 8. The requirements diagram (req) of SysML. 
 
The SysML parametric diagram (par) represents constraints on property values, such as F = m*a, used to 
support engineering analysis. The following figure illustrates the par of an antilock braking system (ABS) 
of an automobile. 
 

 
 

Figure 9. The parametric diagram (par) of SysML. 
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