
1

Chapter 1
Overview of Systems Engineering

Juan R. Pimentel
Consultant

1.1. Introduction
Automated vehicles (AVs), also called autonomous or self-driving vehicles, have the potential to reduce
accidents, help with the environment, reduce congestion, help the elderly and other disadvantaged
populations, and produce other societal benefits [1-5]. However, the touted advantages of autonomous
vehicles and those including latest ADAS features are turning out difficult to sell to the public than many
manufacturers and tier 1’s have anticipated. Much of the early euphoria of self-driving vehicles is
diminishing in the wake of some recent accidents involving automated vehicles with varying degrees of
automation. A recent online marketplace for buying and selling cars, found 69% of respondents are scared
of autonomous automobiles. It also found that these people found technology in cars helpful (58%) but
only 12% said ADAS and infotainment features were “must have”. The survey asked more than 1,000
respondents from across the US geographically and across age groups, although it should be noted the
biggest group was 60+ years-old1. Accidents involving self-driving vehicles are inevitable; as it is the
case with other industries, accidents have happened and will happen no matter the efforts made to avoid
them. The National Transportation Safety Board (NTSB) has issued a report2 on a Tesla accident on May
7, 2016 and two preliminary reports on a Uber accident3 on March 18, 2018 and a Tesla accident4 on
March 23, 2018. After analyzing these reports, what is disturbing are the details associated with these
accidents which indicates that as an industry, we may need to go back to safety 1015.

Regarding the aforementioned accidents, it would not be so bad if the safety systems of the vehicles in
question were designed and functioning properly according to their stated automation level. In the case of
the Tesla accident in Florida, the vehicle failed to activate the forward collision warning (FCW) system
and automatic emergency braking (AEB). In the case of the Uber accident, emergency braking maneuvers
were not enabled while the vehicle was under computer control, to reduce the potential for erratic vehicle
behavior and the system relied on the vehicle operator for safety. In the Tesla accident in California, the
vehicle failed to detect a damaged crash attenuator and hit it at a speed of about 71 mph.

After recent incidents and mishaps involving automated vehicles such as those described above, it is clear
that there is much room for improvement not only by manufacturers but also by government regulations,
researchers, the general public and other stakeholders. Over the past few months, the media has been full
of headlines such as “How Safe Is Driverless Car Technology, Really?”, “Autonomous Cars: How Safe Is
Safe Enough?” and “How safe should we expect self-driving cars to be?” In addition, some industry
analysts and safety experts are offering advice to tech and automotive companies to re-consider their
safety programs. There is also some agreement that “the self-driving car industry’s reputation has suffered
a setback,” and the question is how to fix it5. It appears that automated vehicle companies are much more
stringent when using semiconductor devices and EDA tools demanding that they conform to ISO 26262
than using the same yard stick for their own safety critical designs.

1http://analysis.tu-auto.com/autonomous-car/shifting-public-acceptance-autonomous-tech?NL=TU-
001&Issue=TU-001_20180723_TU-001_235&sfvc4enews=42&cl=article_2_2
2 https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf
3 https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
4 https://ntsb.gov/investigations/AccidentReports/Reports/HWY18FH011-preliminary.pdf
5https://www.eetimes.com/document.asp?doc_id=1333446&_mc=RSS_EET_EDT&utm_source=newsletter&utm_c
ampaign=link&utm_medium=EETimesWeekInReview-20180721

2

So what is there to do? Safety is not new, at least for the last 60 years it has been successfully applied in
several industries such as nuclear, avionics, process control, automotive, and others. What is unique and
special about the safety of self-driving vehicles? What should be the emphasis for a more effective
automated vehicle safety program? What are the roles of governments, standards, testing, verification,
validation, and sound safety engineering efforts? Addressing issues regarding autonomous vehicle safety
is challenging [7]. Currently, as an industry, we just do not fully understand the nature of self-driving
vehicle safety and how to design safe automated vehicles. For example, there is little discussion on ways
to estimate, analyze, compute, or measure the level of safety of an automated vehicle design or automated
vehicles. We need to begin by fully characterizing it and this book series is an effort in this direction.

Some manufacturers such as Waymo cite their recent milestone of 8 million miles driven on public roads
as a measure of the safety achieved by their self-driving vehicles6. However, it is not clear how a certain
number of millions of miles driven contributes to the safety level of self-driving vehicles. Some industry
analysts believe that policy makers and city officials overseeing infrastructure will be the most important
players in reshaping the self-driving vehicle safety landscape. For example, NHTSA has issued a
voluntary guidance whose purpose is to help designers of automated driving systems (ADSs) analyze,
identify, and resolve safety considerations prior to deployment using their own, industry, and other best
practices7. It outlines 12 safety elements, which the Agency believes represent the consensus across the
industry, that are generally considered to be the most salient design aspects to consider and address when
developing, testing, and deploying ADSs on public roadways. Within each safety design element, entities
are encouraged to consider and document their use of industry standards, best practices, company
policies, or other methods they have employed to provide for increased system safety in real-world
conditions. The 12 safety design elements apply to both ADS original equipment and to replacement
equipment or updates (including software updates/ upgrades) to ADSs. However the NHTSA guidance is
not specific enough to help manufacturers designing effective safety mechanisms to reduce risk.

1.2 Characterizing the Safety of Automated Vehicles
How different is the concept or notion of safety in self-driving vehicles when compared to that used in
other industries such as aviation, process control, and automotive? While the fundamental concepts are
the same, the safety of self-driving vehicles has specific attributes that are different or not present
in the safety of other industries. In this section we briefly discuss these attributes. When compared to the
safety of traditional industries such as avionics, process control and automotive, there are specific
attributes pertaining to the safety of self-driving vehicles that we discuss next [23].

1.2.1. Performance degradation.
Traditional safety is based on faults and failures of mostly hardware components, and this is referred to as
the reliability approach to safety [9]. In contrast, accidents involving self-driving vehicles might happen
even if no hardware device fails, but rather a performance degradation of some of its functions or
intended functionality occurs. Addressing safety issues for these situations is referred to as SOTIF, and it
is a fairly new concept as applied to the safety of self-driving vehicles [10]. Thus, some failures are due to
performance degradation of self-driving vehicle components, typically involving higher levels of
processing or higher levels of automation, e.g., service failures. This definition of failure goes beyond that
which is defined in the standard ISO 26262; however, it is compatible with other safety frameworks such
as [8], STPA [11], [12], [13], [14], [15], or other real-time distributed systems [16]. One example of this
understanding of the concept of safety is the failure of a vehicle detection system where the perception
system provides missed detections (i.e., false negatives) or spurious detections (i.e., false positives). This
could happen because the processing of environmental data is highly complex and the object detection
function is subject to errors and impairments, particularly in bad weather or in night conditions when the

6 https://www.theverge.com/2018/7/20/17595968/waymo-self-driving-cars-8-million-miles-testing
7 https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf

3

visibility is poor. Either one of these failures could be catastrophic and could result in an accident or
harm. Another example is a RAdio Detection And Ranging (RADAR) system correctly detecting objects
only when the objects are moving, thus missing static objects because of limits on its performance. Thus,
failure occurs in a degraded performance scenario.

1.2.2. Focus on software.
It is well known that the amount of software in a vehicle continues a rapidly increasing trend that started
with the development of by-wire systems. Much of the functionality of a self-driving vehicle is
implemented in software, and thus it is important to view the perception system as a set of software
servers each providing services to the rest of the system. Therefore, one can refer to these various
functionalities as a vehicle detection server, a pedestrian detection server, a road detection server, etc. The
software in self-driving vehicles is much larger in size and scope compared to traditional industries; thus,
there should be a focus on the safety of the software. As noted, a failure can occur if the software services
deviate from the correct services and this could lead to safety hazards and safety risks. Ultimately, the
overall safety of a self-driving vehicle will be dictated by the safety of its software [9], [12].

1.2.3. Non-deterministic perception system.
In the absence of hardware faults, the perception systems of traditional industries are mostly deterministic
in nature. For example, sensing the intake manifold pressure or engine speed in automotive systems is
deterministic4. In contrast, the perception systems of self-driving vehicles are non-deterministic, leading
to a high level of false positives and false negatives when their performance deteriorates to the point that
service failures cannot be avoided. The non-deterministic aspect of the perception system stems from the
fact that one never knows when its performance will deteriorate to the point where failures begin to
appear in the services delivered by the system. Thus, the services provided by the perception system are
subject to random failures; e.g., when the weather deteriorates or when the system makes detection errors.

1.2.4. Perception system complexity.
Sensing elementary physical phenomena such as temperature or pressure is relatively simple, involving
just some deterministic sensors, some electronics, and communications. In contrast, sensing or detecting
man-made entities or constructs such as another vehicle, a road boundary, a city street, or a street
intersection is complex because of the lack of structure of what is being sensed or
perceived. The implication of the complexity of the perception system is that it is prone to errors, which
degrades the performance or safety of the overall vehicle.

1.2.5. Overall system complexity.
In addition to its perception system, a self-driving vehicle also includes localization and mapping,
planning and control, and actuation resulting in a highly complex system. One of the main issues with
system complexity is that it makes testing for safety challenging, particularly if machine learning
techniques are used, as it makes the design opaque to humans. This makes tracing the
design and the test plans to the requirements problematic, since there is no human-understandable design
that can be used for verification and testing [17]. In addition, it is known that when the system is
complex, the system safety is affected by interacting complexity and tight coupling [9]. Another aspect
of system complexity is that the autonomous vehicle operates in a complex external environment, and
there are safety hazards due to events outside the domain of the autonomous vehicle, e.g., from other
vehicles (whether self-driving or not). Thus, the safety attributes of a self-driving vehicle are significantly
different from those in other industries such as avionics, process control, and automotive.

In addition to its attributes, what are the various types of safety that encompass the overall safety of self-
driving vehicles? As noted, the safety of self-driving vehicles is complex and differs from that of other
industries such as avionics, process control, and automotive. On the one hand, there are safety
commonalities such as the safety that involves component failures, which is the subject of so-called

4

functional safety, and the safety involving components whose failure rates are well understood because
they are proven in use, i.e., in actual operation. On the other hand, there are two types of safety that are
not prevalent in the avionics, process control, and automotive industries, and these include SOTIF and
multi-agent safety. Thus, the types of safety that characterize the safety of self-driving vehicles include
(1) Traditional functional safety as defined by ISO 26262, (2) SOTIF, and (3) multi-agent safety [23].
Feth et al also emphasize that safety assurance is a concern because established safety engineering
standards and methodologies are currently not sufficient [22]. They also conclude that there are three
types of safety that characterize the safety of self-driving vehicles, (1) Traditional functional safety, (2)
SOTIF which they assume are due to functional insufficiencies, and (3) multi-agent safety related to safe
driving behaviors which are abstracted from technological challenges of situation awareness.
Furthermore, they elaborate the fundamental safety engineering steps that are necessary to create safe
vehicle of higher automation levels while mapping these steps to the guidance presently available in
existing (e.g., ISO26262) and upcoming (e.g., ISO PAS 21448 [26]) standards. Functional safety is a well
understood area which is guided by a number of international standards such as IEC 61508 [18], IEC
61511 [19], and ISO 26262 [6], and there is a large number of papers and publications on this topic.
However, it is noted that ISO 26262 does not cover automated vehicles, thus its application should be
done with great care. In the following, we characterize the safety category of SOTIF.

1.3 Role of Systems Engineering
Many systems and products are very complex, very large, or both; certainly one example is an automated
vehicle with a high degree of safety, thus the complexity of designing and developing an autonomous
vehicle with a high degree of safety. Systems engineering (SE) is a methodology that includes a set of
processes, techniques, and procedures to design systems that are very complex and/or very large. SE is
based on the concept of a system lifecycle composed of a number of phases such as concept, product
development, and production and operation. The concept phase includes many sub-tasks such as item
definition, initiation of safety lifecycle, hazard analysis and risk assessment, and functional safety concept
(FSC). The product development phase can be performed at a system, hardware, and software levels.
Finally, the production and operation (or utilization) phase includes production, operation, service
(maintenance, repair, etc.), and decommissioning.

The number and names of system lifecycle phases are not unique. Other phases identified with a
system lifecycle include requirements phase, preliminary and detailed design phase, construction and
production phase, and the operation phase. The requirements phase is an important phase that takes place
at the beginning of a project that involves top level requirements at all functional levels. Some
requirements are further developed or extended into“derived requirements”. This process is repeated
appropriately until reaching the lowest level possible. There are two types of requirements, functional
and non-functional. Requirements need to be carefully selected in order to ensure that they make sense in
the context of the final outcome of the project and conveyed to all the team members. Missing out on a
requirement or misapplying one could spell disaster for a project. A functional requirement
specifies what the system should do, i.e., it describes a particular behavior or function of the system when
certain conditions are met, for example: “Send email when a new customer signs up” or “Open a new
account.” A functional requirement for an everyday object like a cup would be: “ability to contain tea or
coffee without leaking. ”Examples of some functional requirements include: Carry people on public
streets and roadways, carry people through air space provide external interfaces, define business rules,
perform transaction corrections, perform adjustments and cancellations, provide administrative functions,
provide authentication, use authorization levels, perform audit tracking, etc. A non-functional requirement
specifies how the system performs a certain function, i.e., it describes how a system should behave and
what limits there are on its functionality; it specifies the system’s quality attributes or characteristics, for
example: “Modified data in a database should be updated for all users accessing it within 2 seconds.”A
non-functional requirement for the cup mentioned previously would be: “contain hot liquid without
heating up to more than 45 °C.”Important categories of non-functional requirements include

5

availability, safety, security, and reliability. The preliminary and detailed design phase includes
intermediate and final designs with enough details and specifics for its implementation by other parties. It
is based on requirements and involves assumptions, calculations, measurements, simulations, etc. The
outcomes of this phase are produced using an assortment of tools in the categories of drawing, simulation,
system engineering, etc. The construction and production phase is that where the system is built up using
blueprints of the detailed design phase. When the construction is done in series, e.g., in a manufacturing
plant, then it is termed production. Testing is an important activity to be done during construction. There
are many types of tests such as unit test, system test, interoperability test, stress test, system test, etc. The
operation phase starts when the system or product is put in service and ends when the system is taken out
of service or decommissioned. It includes the following activities: operation, maintenance,
troubleshooting, repair, etc.

Fig. 1. System Engineering V-model listing main tasks on the left and right sides of the V.

Systems engineering also uses the so-called V model to specify and describe key tasks while designing a
complex or large system. These key tasks include requirements, design, implementation, test, verification,
and validation which are performed at specific times and in a V shape depicted in Fig. 1. The lifetime
phases (or tasks) of requirements, design, and implementation are performed on the left side of the V
while the tasks involving testing, verification, and validation are performed on the right side of the V. The
reason for depicting these activities on a V (rather than in a linear fashion) is that while working on the
requirements specifications, the corresponding specifications for validation are developed concurrently
and correspond to the same vertical level. While the completion of the requirements specification task is
made very early in the development lifecycle of the product or project, the completion of the validation
task is the last one. On the left side of the V, decomposition and definition activities resolve the system
architecture and create the details of the design. Integration and verification flow up and to the right as
successively higher levels of subsystems are verified, culminating at the system level. Verification
ensures the system was built right (meets requirements, standards, etc.), whereas validation ensures
the right system was built (meets customers’ needs). Ascending the right side of the V is the process of
integration and verification and at each level, there is a direct correspondence between activities on the

6

left and right sides of the V. This correspondence is deliberate - the method of verification must be
determined as the requirements are developed and documented at each level. This minimizes the chances
that requirements are specified in a way that cannot be measured or verified.

Although SE can be applied to any endeavor (e.g., physical and social sciences, engineering, and
management, etc.), in this section we discuss its application to engineering and more specifically,
designing a safe automated vehicle. One of the most fundamental ideas of SE is the following. At each
level, starting at highest level of abstraction and proceeding to lowest, identify main functions using
input/output relationships and use functional decomposition techniques to generate sub-functions at lower
levels of abstraction. This decomposition process is repeated until 4 to 8 levels (typically) deep are
generated. At each level sufficient details is added to clarify composition, relationships, requirements,
behaviors, interfaces, parameters, etc. This process is illustrated in Figs 2 (a) and (b) where a system or
sub-subsystem is decomposed into constituent components until a sub-system with readily available
components can be implemented.

Figure 2 (a). Top level block diagram of a system.

7

Figure 2 (b). Functional decomposition of a component into its constituent sub-components.

Designing a vehicle with a high level of safety is complex, thus the importance of using SE principles.
Indeed, the ISO 26262 standard which has been specifically developed for automotive safety uses the V
model as the underlying framework. This decision minimizes unnecessary rework, errors in requirements
development and cascading. This will force some testing and verification activities to occur at various
levels of integration early in the process. More specifically, the ISO 26262 standard uses the V model at
the system level (Section 4), at the hardware level (Section 5) and at the software level (Section 6).

1.3.1 Model Based Systems Engineering (MBSE)
Model-based systems engineering is a systems engineering methodology that focuses on creating and
exploiting domain models as the primary means of information exchange between engineers, rather than
on document-based information exchange. These models fall into many categories including functional,
behavioral, structural, operational, component, performance, safety, and many others. The benefits that
are attributed to using an MBSE approach include shared understanding of system requirements and
design, assisting in managing complex system development, improving design quality, supporting early
and on-going verification and validation to reduce risk, providing value through life cycle, and enhancing
knowledge capture. One effective way to benefit from MBSE is through specific modeling languages for
systems engineering which have incorporated many domain models in an intrinsic fashion as is the case
with SysML which is summarized next.

1.3.2 The Systems Modeling Language (SysML)
SysML is a general-purpose modeling language for systems engineering applications. It supports the
specification, analysis, design, verification and validation of a broad range of systems and systems-of-
systems. These systems may include hardware, software, information, processes, personnel, and facilities.
SysML is becoming important in the execution of many safety tasks associated with the V-model of
system engineering. There are four major categories of SysML diagrams, also known as the “four pillars
of SysML”, structure, behavior, requirements, and parametrics. The structure category basically allows
one to describe what the system is including its main constituent components. While this is important to
get started, the structure category is static as it does not describe how the system works or behaves which

8

is the function of the behavior category. Thus the behavior category describes the dynamic aspect of the
system. As noted, all design work begin with a set of requirements describing what one can expect from
the system. The requirements category of SysML enables the specification of these requirements. A
system typically consists of many sub-systems with a number of interfaces. The parametrics category
defines the nature of these interfaces including quantification beyond qualitativeness, e.g., formulas,
equations, units, etc.
 In most cases, just nine SysML diagrams are used which belong to the four categories described
previously. The structure category includes three diagrams: block definition diagram (bdd), internal
block diagram (ibd), and package diagram (pkg). Four diagrams belong to the behavior category:
sequence diagram (sq), state Machine diagram (stm), activity diagram (act), and use case diagram (uc).
The requirements and parametrics categories each include just one diagram, the requirement diagram
(req), and parametric diagram (par) respectively. In the following, we briefly summarize some of these
SysML diagrams.
 The SysML block definition diagram (bdd) represents system elements called blocks, and their
composition, classification and navigation. The following figure illustrates the bdd of a perception system
of an automated vehicle.

Figure 3. The block definition diagram (bdd) of SysML.

The SysML internal block diagram (ibd) represents interconnection and interfaces between the parts of a
block including external ports of the block
. The following figure illustrates the ibd of a perception system of an automated vehicle.

9

Figure 4. The internal block diagram (ibd) of SysML.

The SysML package diagram (pkg) represents the organization of a model in terms of packages that
contain model elements. Thus this diagram is used for model structuring rather than system structuring.
The SysML sequence diagram (sd) represents behavior in terms of a sequence of messages exchanged
between parts. The following figure illustrates the sd of a radar sensor sub-system pertaining to the
perception system of an automated vehicle.

10

Figure 5. The sequence diagram (sd) of SysML.

The SysML state machine diagram (stm) represents behavior of an entity in terms of its transitions
between states triggered by events. The following figure illustrates the stm of an antilock braking system
(ABS) of an automobile.

Figure 6. The state transition diagram (std) of SysML.

The SysML activity diagram (act) represents behavior in terms of the ordering of actions based on the
availability of inputs, outputs, and control, and how the actions transform the inputs to outputs. The
following figure illustrates the act of an antilock braking system (ABS) of an automobile.

Figure 7. The activity diagram (act) of SysML.

The SysML use-case diagram (uc) represents functionality in terms of how a system or other entity is
used by external entities (i.e., actors) to accomplish a set of goals. The SysML requirements diagram (req)
represents text-based requirements and their relationships with other requirements, design elements, and
test cases to support requirements traceability. The following figure illustrates the req of a radar sensor
sub-system pertaining to the perception system of an automated vehicle.

11

Figure 8. The requirements diagram (req) of SysML.

The SysML parametric diagram (par) represents constraints on property values, such as F = m*a, used to
support engineering analysis. The following figure illustrates the par of an antilock braking system (ABS)
of an automobile.

Figure 9. The parametric diagram (par) of SysML.

12

REFERENCES

1. S. Thrun et al., “Stanley: The robot that won the DARPA grand challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

2. C. Urmson et al., “Autonomous driving in urban environments: Boss and the urban
challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

3. H. Cheng, Autonomous Intelligent Vehicles: Theory, Algorithms, and Implementation.
Springer London, 2011.

4. F.-Y. Wang et al., “IVS O5: New developments and research trends for intelligent vehicles,”
IEEE Intelligent Systems, vol. 20, no. 4, pp. 10–14, 2005.

5. H. Cheng et al., “Interactive road situation analysis for driver assistance and safety warning
systems: Framework and algorithms,” IEEE Transactions on Intelligent Transportation
Systems, vol. 8, no. 1, pp. 157–166, 2007.

6. International Organization for Standardization, “Road Vehicles – Functional Safety,” ISO
Standard 26262, 2011.

7. P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary challenge,”
IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp. 90–96, 2017.

8. A. Avizienis et al., “Basic concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

9. N. G. Leveson, Safeware: System Safety and Computers. Addison- Wesley, 1995.
10. W. Wendorff, “Quantitative SOTIF analysis for highly automated driving systems,” in

Safetronic.2017, Conference Proceedings, Stuttgart, Germany, 2017.
11. J. Thomas et al., “An integrated approach to requirements development and hazard analysis,”

in SAE Technical Paper No. 2015-01-0274.
12. N. G. Leveson, Engineering a Safer World : Systems Thinking Applied to Safety. MIT Press,

2012.
13. W. Young and N. G. Leveson, “An integrated approach to safety and security based on

systems theory,” Communications of the Association for Computing Machinery (ACM), vol.
57, no. 2, pp. 31–35, 2014.

14. A. Abdulkhaleq, S. Wagner, and N. Leveson, “A comprehensive safety engineering approach
for software-intensive systems based on STPA,” in 3rd European STAMP Workshop,
Conference Proceedings, Amsterdam, The Netherlands, 2015.

15. A. Abdulkhaleq et al., “A systematic approach based on STPA for developing a dependable
architecture for fully automated driving vehicles,” in 4th European STAMP Workshop,
Conference Proceedings, Zurich, Switzerland, 2017.

16. H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

17. P. Koopman and M. Wagner, “Toward a framework for highly automated vehicle safety
validation,” in SAE Technical Paper No. 2018-01-1071.

18. International Electrotechnical Commission, “Functional Safety of Electrical / Electronic /
Programmable Electronic Safety-Related Systems,” IEC Standard 61508, 2010.

19. International Electrotechnical Commission, “Functional Safety – Safety Instrumented
Systems for the Process Industry Sector,” IEC Standard 61511, 2018.

20. S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and scalable
self-driving cars,” Computing Research Repository (CoRR), vol. arXiv:1708.06374 [cs.RO],
2017. [Online]. Available:http://arxiv.org/abs/1708.06374

21. L. Gauerhof, P. Munk, and S. Burton, “Structuring Validation Targets of a Machine Learning
Function Applied to Autonomous Driving,” B. Gallina et al. (Eds.): SAFECOMP 2018,
LNCS 11093, pp. 45–58, 2018.

13

22. Patrik Feth, Rasmus Adler, Takeshi Fukuda, Tasuku Ishigooka, Satoshi Otsuka, Daniel
Schneider, Denis Uecker, and Kentaro Yoshimura, “Multi-aspect Safety Engineering for
Highly Automated Driving Looking Beyond Functional Safety and Established Standards and
Methodologies,” B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS 11093, pp. 59–72, 2018.

23. J. Pimentel and J. Bastiaan, Characterizing the Safety of Self-Driving Vehicles: A Fault
Containment Protocol for Functionality Involving Vehicle Detection, 2018 IEEE
International Conference on Vehicular Electronics and Safety (ICVES), September 12-14,
2018, Madrid, Spain.

24. J. Pimentel, J. Bastiaan, and M.Zadeh, Numerical Evaluation of the Safety of Self-Driving
Vehicles: Functionality Involving Vehicle Detection, 2018 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), September 12-14, 2018, Madrid, Spain.

25. C. Schorn, A. Guntoro, and G. Ascheid, “Efficient On-Line Error Detection and Mitigation
for Deep Neural Network Accelerators,” B. Gallina et al. (Eds.): SAFECOMP 2018, LNCS
11093, pp. 205–219, 2018.

26. International Organization for Standardization, ISO/WD PAS 21448, “Road Vehicles - Safety
of the Intended Functionality,” ISO Working Draft, 2013.

27. S. Burton, L. Gauerhof, and C. Heinzemann, “Making the case for safety of machine learning
in highly automated driving,” in International Conference on Computer Safety, Reliability,
and Security (SAFECOMP), Conference Proceedings, Trento, Italy, 2017.

28. R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO 26262: Machine learning and
safety in automotive software,” in SAE Technical Paper No. 2018-01-1075.

29. A. Geiger et al., “Vision meets robotics: The KITTI dataset,” International Journal of
Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

30. X. Bi et al., “A new method of target detection based on autonomous radar and camera data
fusion,” in SAE Technical Paper No. 2017-01-1977.

31. M. Realpe, B. Vintimilla, and L. Vlacic, “Towards fault tolerant perception for autonomous
vehicles: Local fusion,” in 7th IEEE International Conference on Robotics, Automation and
Mechatronics (RAM), Conference Proceedings, Angkor Wat, Cambodia, 2015.

